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Abstract

We develop a powerful quadratic test for the overall significance of many covariates in a dense

regression model in the presence of nuisance parameters. By equally weighting the sample moments,

the test is asymptotically correct in high dimensions even when the number of coefficients is larger

than the sample size. Our theory allows a non-parametric error distribution and weakly exogenous

nuisance variables, in particular autoregressors in many applications. Using random matrix theory,

we show that the test has the optimal asymptotic testing power among a large class of competitors

against local dense alternatives whose direction is free in the eigenbasis of the sample covariance matrix

among regressors. The asymptotic results are adaptive to the covariates’ cross-sectional and temporal

dependence structure and do not require a limiting spectral law of their sample covariance matrix.

In the most general case, the nuisance estimation may play a role in the asymptotic limit and we

give a robust modification for these irregular scenarios. Monte Carlo studies suggest a good power

performance of our proposed test against high dimensional dense alternative for various data generating

processes. We apply the test to detect the significance of over one hundred exogenous variables in the

FRED-MD database for predicting the monthly growth in the US industrial production index.

Keywords: High–dimensional linear model; null hypothesis; uniformly power test

JEL classification: C12, C21, C55

1 Introduction

When the data dimension exceeds the sample size, the classical variance ratio statistics (e.g. F statistic)

are degenerate and therefore infeasible for testing many regression coefficients simultaneously. Even

with a smaller data dimension but comparable to the sample size, the traditional quadratic tests still

suffer in weak power; see, e.g., Zhong and Chen (2011). One existing solution is to consider the sparse

models where the true model only deviates from the null hypothesis in only a few components. For
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example, by using higher criticism methods (Donoho and Jin, 2004; Hall and Jin, 2010; Zhong et al.,

2013), by adding a non-trivial power enhancement component sensitive to the sparsity (Fan et al., 2015;

Kock and Preinerstorfer, 2019), or by detecting the extreme behavior of marginal p values or t statistics

(??Chernozhukov et al., 2019), one may improve the testing power in many applications. For more

general sparse inference theory for high dimensional linear mean regression we also refer to ??, ?, ?, ?, ?

and many references therein.

While the sparsity assumption is convenient, it may not be always available in economic applications.

In particular, Giannone et al. (2017) observe non-sparsity among the original covariates for five out of six

important economic data sets. When the true model is dense, Goeman et al. (2006) propose a powerful

score test against local departures from the null. The rationale behind is a version of Neyman–Pearson

lemma under an empirical Bayesian model, by taking into account the likelihood of the random regression

coefficients. Strictly, their approach requires knowledge of the error distribution. This is an ambitious

task in high dimensions, as the sample residuals may be degenerate for useful statistical inference. A

list of follow-up works, such as Goeman et al. (2011) and Guo and Chen (2016), extend this approach

to generalized linear models with some prior knowledge (such as the variance) of the error distribution.

U-statistic based tests are also available in some independent models; see, e.g., Zhong and Chen (2011)

and Cui et al. (2018). For a simple linear hypothesis in dense models, Zhu and Bradic (2018) develop a

test using an implicit sparse condition on the projected covariance matrix among predictors. ? extend the

inference theory with heteroscedasticity for low-dimensional parameters in the presence of many nuisance

parameters but less than the sample size. Our review is not exhaustive, and we also refer to the references

of the aforementioned papers.

We follow the dense modeling strategy and are mostly interested in the high dimensional data with

the number of unrestricted coefficients larger than the sample size. This means that we are typically

testing a large (sub)set of original covariates rather than their unknown sparse representation if there

is any. Therefore, our test procedure is more interpretable from an economic perspective and is free

from tuning parameters. Using random matrix theory, we relax the parametric conditions on regression

errors and allow nuisance variables, particularly autoregressors, to enter the estimation procedure. To

our knowledge, our results are novel and the scope of the applications is much wider in dealing with

nuisance parameters and non-Gaussian models.

We start from the autoregressive model to be used in our empirical study, where we test the overall

significance of a large set of exogenous predictors. We then provide direct relaxations for general nuisance

variables as linear combinations of lagged and contemporary information. A natural approach is to

estimate the nuisance coefficients with the restrictions and then test on the residuals. This is similar

to the score test in Goeman et al. (2011) using a Gaussian likelihood, but we show that the approach

generalizes and does not require specific knowledge about the error distribution. For generality we work

with nonrandom coefficients in our asymptotic theory, while our free alternatives (to be defined later on)
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are originated from the exchangeable Baysian model. To relax the independence assumption between

the autoregressors and errors, we standardize the test statistic into a martingale form and establish its

asymptotic normality using martingale central limit theorem. Adapting to the non-sparse cross sectional

dependence structure and unknown temporal dependence structure among regressors, we study strongly

exogenous variables, that is, weak predictors uncorrelated with the shocks to the response variable. A

more sophisticated (i.e. weaker) exogeneity assumption is possible using more general martingale theory

(see, e.g., Hall and Heyde, 1980, Chapter 3.3) with the cost of greater complications, but we leave the

relaxations as future work.

In order for the limiting power to be nontrivial, our study is based on the local alternatives with weak

signal length converging to zero at a proper rate depending on the data dimension and the sample size.

This rate turns out to be similar to that at the detection boundary in, e.g., ? and Arias-Castro et al.

(2011) between the sparse and dense Gaussian models, although we allow a general error distribution

here. Using random matrix theory, we derive the asymptotic power of our proposed test and compare it

with that of a large class of other quadratic tests. In the spirit of Ledoit and Wolf (2012), we construct

the competing quadratic statistics based on spectral transformations of the large dimensional weighting

matrix for testing our moment conditions, including some naive case equivalent to the classical F statistic

asymptotically as the data dimension diverges. The nuisance estimation, even for a small number of

parameters, can have a substantial effect for irregular time-dependent high-dimensional covariates in the

most general case. Examples include the high-dimensional moving-average or autoregressive predictors

sharing common lagged coefficients across all dimensions, as shown in our simulations. For an unified

inference, in the end of our theory we establish a robust method which is novel to our knowledge.

Equally weighting the sample moments yields the optimal asymptotic power for free alternatives under

regularity conditions, when comparing with the competitors in our asymptotic theory. Roughly, we call

a regression coefficient vector free if its direction is unrelated to the spectral information of the sample

covariance matrix of the associated predictors; we give the mathematical definition in the next section.

The free models play a crucial role in random matrix theory for characterizing the eigenvector asymptotics

of large sample covariance matrix; see, e.g., Bai et al. (2007), Ledoit and Péché (2011), Xia et al. (2013),

Pan (2014), Xi et al. (2020) and many references therein. When the regressors are independent and

identically distributed over time, the aforementioned papers show that the class of free alternatives

coincides under the eigenbasis of the population covariance matrix and that of the sample covariance

matrix; in particular, when regressors are orthogonal and properly standardized, all directions over the

unit sphere are free. More straightforward examples include the sample paths from the (exchangeable)

stochastic coefficients model in, e.g., Goeman et al. (2011) and Dobriban and Wager (2018). As noted

above, for generality, we unify the definition in a frequentist framework and consider only deterministic

alternatives in our asymptotic theory.

Last but not least, our asymptotic theory uses the observable empirical spectral distribution of the
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large sample covariance matrix rather than its limit. Hence, our statistical methods are data adaptive

and remain valid even when the empirical spectral distribution diverges. The asymptotic results remain

true by substituting in the limiting distribution, if there is any, for such as the data generating processes

in Marčenko and Pastur (1967), Yin (1986), Silverstein and Bai (1995), Silverstein (1995), Zhang (2006),

El Karoui (2009), Jin et al. (2009), Zheng and Li (2011), Pan et al. (2014), Liu et al. (2015), Xia and

Zheng (2018) and many references therein.

The rest of the paper is organized as follows. We develop the asymptotic theory in Section 2. Section

3 presents a simulation study that demonstrates the finite-sample performance of our optimal test. In

Section 4 we provide a macroeconomic application using the FRED-MD database, which is designed for

high dimensional empirical analysis. We conclude the paper in Section ??. We sketch the mathematical

proofs of the main theorems and the corollaries in the end. To save space, the technical details including

the proofs of the lemmas and propositions are provided in the supplement. Besides, in the supplement we

report more simulation and empirical analysis results, verify the technical conditions for some examples

and give the most general asymptotic limits. Throughout, for any matrix A, we denote is (t + l, t)-th

element as A(t+l, t), its transpose by AT , its trace by tr(A), its spectral norm by ‖A‖sp = sup‖u‖=1 ‖Au‖,

and its Frobenius norm by ‖A‖ =
√

tr(ATA). When A is symmetric, we denote its smallest and largest

eigenvalues by λmin(A) and λmax(A) respectively; if A is also positive semi-definite, we use λmax(A) to

denote its spectral norm. We denote by ‘
P−→’ the convergence in probability and by ‘

d−→’ the convergence

in distribution. With a slight abuse of notation, we denote by Zn
d−→ N (0, 1) if the sequence (or array)

of random variables {Zn} converges in distribution to some standard normal variable. Unless specified

otherwise, all asymptotic results hold as the sample size n→∞ in the probability space with the largest

sigma algebra.

2 Asymptotic theory

As a motivating example, suppose we observe responses y1, . . . , yn ∈ R and the initial values {y0, y−1, . . . , y1−d}

generated by an autoregressive regression model

yt = θ0 +

d∑
i=1

θiyt−i + xTt β + εt, (2.1)

where xt = (xt,1, . . . , xt,p)
T ∈ Rp are observable exogenous variables with unknown coefficients β =

(β1, . . . , βp)
T ; εt are unobservable regression errors with zero mean and unknown variance. Let zt :=

(1, yt−1, . . . , yt−d)
T ∈ Rd+1 collect the lagged dependent variables whose coefficients θ = (θ0, θ1, . . . , θd)

T

we always estimate. Therefore, we can rewrite the model into a general form given by

yt = zTt θ + xTt β + εt, t = 1, . . . , n. (2.2)

We postpone the extension beyond the autoregressive model to Subsection 2.3. For cross-sectional or
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more general data sets, we allow the nuisance variables zt := (1, zt,1, . . . , zt,d) to contain both the lagged

and current information in such a way that

zt,i = αi +
∞∑
l=1

ψi(l)wt−l + rt,i, wt = xTt β + εt, (2.3)

with mean αi = Ezt,i, moving average coefficients {ψi(l) : l = 1, 2, . . .} that may be different for different

nuisance variables, and contemporary random shocks rt,i. Note that the coefficient vector β may enter

both equations (2.2) and (2.3). We use only the former one for our testing statistic, to avoid estimating

the infinite sequence(s) of moving average coefficients. At the moment our focus is on the autoregressive

model (2.1) as a starting point.

Our null hypothesis is that all the exogenous variables xt are irrelevant, that is,

H0 : β = 0p, (2.4)

where 0p denotes the p-dimensional vector of all zeros. The zeros are not special. By rewriting the linear

regression model, one may replace the null value by an arbitrary non-zero coefficient vector. Similarly,

one may map the coefficients to their linear combinations by transforming the variables. We use the zeros

as null values for presentation convenience. We consider a large dimension p comparable to the sample

size n:

Assumption 1. The dimension p = p(n)→∞ and p/n→ c ∈ (0,∞) as the sample size n→∞.

This asymptotic regime is standard in random matrix theory (see, e.g., the surveys in Bai and Silverstein,

2010), which is useful in many economic applications with comparable p and n (see, e.g., Stock and

Watson, 2002 and Ledoit and Wolf, 2017). The concentration ratio p/n, usually larger than 1, plays an

important role in our asymptotic limits. While the assumption rules out the case p/n → ∞ in general,

our simulations in the next section suggest that our asymptotic approximation performs well for a wide

range of p/n in finite samples. Indeed, our asymptotic theory actually allows the dimension p to diverge

at a higher rate (i.e. a very large p/n in practice) under the null hypothesis but we maintain the current

setup to simplify the power theory for the non-sparse alternatives. To avoid unnecessary complications,

we assume that the nuisance dimension d is fixed although our proofs actually allow for a slow rate of

divergence.

Note that our model is indexed by the sample size n as the dimension p = p(n) diverges, but we sup-

press this in the subscripts whenever no confusion arises. Throughout we assume the following exogeneity

and identification conditions.

Assumption 2. The following conditions hold:

(a) The regression errors εt = σn ηt, for some unknown variance σ2n = σ2n(x1, · · · , xn) bounded away

from zero almost surely, and {ηt,Fn,t} is a martingale difference array such that E [ηt | Fn,t−1] = 0
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and E
[
η2t | Fn,t−1

]
= 1 where Fn,t−1 is the product of sigma-algebras generated by {ηs : s ≤ t− 1},

{zs : 1 ≤ s ≤ t} and {xs : 1 ≤ s ≤ n}. For some ι ∈ (0, 1], E
[
|η2t − 1|1+ι | Fn,0

]
≤ κn for all

t = 1, . . . , n with probability 1, and κn = κn(x1, . . . , xn) = OP(1).

(b) The regressors (zTt , x
T
t )T are identically distributed over index t = 1, . . . , n, and their population

covariance matrix is finite and positive definite for each n; without loss of generality, xt is demeaned

such that E[xt] has all zero entries.

(c) All the roots of the d–th degree polynomial equation 1− θ1λ− θ2λ2− . . .− θdλd = 0 are greater than

1 in absolute value when considering the autoregressive model (2.1).

Condition (a) only requires slightly more than the second moment of ηt and allows heavy tails. Condition

(b) assumes the existence of the second moments among regressors. We allow a complex dependence

structure over the (time) index t, without restricting any particular form of stationarity nor mixingness.

The zero mean condition is only for presentation convenience here, as we always demean the predictors

when pre-processing the data. Conditions (c) is a standard stability condition for autoregressive model.

The special case with no autoregressor (i.e. d = 0) is included in our theory, although it is not very

interesting here.

In the following subsections, we first develop our test statistic and establish its asymptotic distribution

under the null hypothesis. Then, we introduce a sequence of free alternatives and derive an asymptotic

power property for our test. Extensions to non-free alternatives are also discussed. To show the optimality

of our proposed test, we compare it with a class of other quadratic tests using weighted matrixes based on

spectral transformations of the large dimensional sample covariance matrix for our moment conditions.

Finally, we generalize the results beyond autoregressive models for possibly irregular predictors.

2.1 Testing the null hypothesis

Observe that our problem is equivalent to testing the high dimensional moment condition given by

E
[
xt(yt − zTt θ)

]
= Σβ

H0= (0, . . . , 0)T ,

as the population covariance matrix Σ := E
[
xtx

T
t

]
is positive definite, where ‘

H0=’ denotes equality under

the null hypothesis. We estimate the nuisance parameters θ from the restricted regression model given

by

yt
H0= zTt θ + εt, t = 1, . . . , n,

that is, in matrix form,

Y
H0= Zθ + ε,
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where Y = (y1, . . . , yn)T denotes the response vector, Z = (z1, . . . , zn)T ∈ Rn×(d+1) denotes the nuisance

design matrix, and ε = (ε1, . . . , εn)T denotes the error vector. Minimizing the squared errors

n∑
t=1

(yt − zTt θ)2,

yields the least-squares estimator

θ̂ =
(
ZTZ

)−1
ZTY,

and the residual vector

e = (e1, . . . , en)T = Y − Zθ̂.

Let x̄ = 1
n

∑n
t=1 xt be the sample mean of testing variables. Note that

∑n
t=1 et = 0 as the intercept term

is included in estimation. Substituting the residual vector e for the error vector ε, our estimate of the

moment vector E [xtεt] is therefore given by

1

n

n∑
t=1

xtet =
1

n

n∑
t=1

(xt − x̄)et =
1

n
X̃e,

where X̃ is the demeaned design matrix given by

X̃ = (x1 − x̄, . . . , xn − x̄)T =: (x̃1, . . . , x̃n)T .

Summing up the squared sample moments yields

1

n2
eT X̃X̃T e =

1

n
eT
(

1

n
X̃X̃T

)
e =:

1

n
eTSne,

where Sn = 1
nX̃X̃

T . Let An = Sn − diag (Sn), where diag(Sn) denotes a diagonal matrix with same

main diagonal of Sn. We center the quadratic form asymptotically by removing the diagonal elements,

normalize it, and construct the quadratic test statistic

Qn :=
1√

2 ‖An‖
eTAne =

1∥∥∥Ãn∥∥∥eT Ãne,
where Ãn denotes the lower triangular part of An.

Rewriting Qn into an (approximate) martingale form

Qn =

√
2

‖An‖
∑

1≤s<t≤n
etes

1

n
x̃Tt x̃s,

and applying the martingale limit theorems, we shall establish the asymptotic distribution of Qn under

the null hypothesis (2.4).

Theorem 1 (Oracle test). Let Assumptions 1 and 2 hold. In addition, suppose that:

(i) The cross product matrix Ω̂ := 1
nZ

TZ has eigenvalues bounded away from 0.
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(ii) λmax

(
ÃTn Ãn

)
= oP

(
‖An‖2

)
.

(iii)
∑n−l

t=1 |An(t+ l, t)| = oP

(
n

1
2 ‖An‖

)
for each l ≥ 1, where An(s, t) denotes the (s, t) element of An.

Then Qn/σ
2
n

d−→ N (0, 1) under the null hypothesis (2.4).

We offer some general discussions on the conditions. Condition (i) is a trivial identification condition

that holds with probability approaching one, for example, when Ω̂
P−→ Ω for some positive definite matrix

Ω. In the supplementary document (He et al., 2020) we check condition (ii) for our simulation models.

Here, we argue that the condition is weak enough to allow much more general data sequences. Observe

that ‖An‖2 = 2 tr(ÃTn Ãn), and therefore we can rewrite condition (ii) slightly as

λmax

(
ÃTn Ãn

)
= oP

(
tr(ÃTn Ãn)

)
.

In other words, we assume that the individual eigenvalues of ÃTn Ãn are asymptotically negligible to their

sum. This is essential for a Lindeberg’s condition when applying the martingale central limit theorem

to random quadratic forms; see, e.g., de Jong (1987), Wu and Shao (2007) and many references therein.

We use the lower triangular part Ãn instead of the full matrix An to provide a (much) weaker condition,

as it is not hard to show that λmax

(
ÃTn Ãn

)
≤ λmax

(
ATnAn

)
= ‖An‖2sp. Indeed, even when ‖An‖2sp is

non-negligible relative to ‖An‖2, our condition still holds if An satisfies the “large p, small n” paradigm

(see, e.g., Cui et al. 2018):

tr
(
A4
n

)
= oP

(
tr2
(
A2
n

))
,

where we may replace A2
n by ÃTn Ãn if necessary.

We call condition (iii) a regular scenario, which allows the low-dimensional estimation error of nuisance

parameters to die away in high dimensions. For general purposes, we relax this condition to allow for an

irregular data sequence and develop a robust method in Subsection 2.3. By Cauchy–Schwarz inequality,

it suffices to assume that each subdiagonal of An is negligible in the sense that

n−l∑
t=1

A2
n(t+ l, t) = op(‖An‖2), for each l ≥ 1, (2.5)

as required in Wu and Shao (2007), equation (13). We can verify condition (2.5), for example, for

independent sequence {xt} with covariance matrix Σ = E[xtx
T
t ] such that tr(Σ2) = o(np), when ‖An‖2

diverges at the rate of p under regularity conditions. In applications, as we suggested above, the condition

can be justified from data as the weighting matrix An is observable.

A feasible test with size α ∈ (0, 1) is therefore to reject the null if

Qn > σ̂2Φ−1(1− α), (2.6)

where Φ−1 denotes the quantile function of a standard normal variable, and σ̂2 is a consistent estimator

of σ2n in the sense that σ̂2/σ2n
P−→ 1. When the true model is sparse, a consistent estimator of the error
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variance in (ultra)high dimension is available using the refitted cross-validation techniques (Fan et al.,

2012). For non-sparse models but with regression coefficients in some special directions, an alternative

estimator is available by solving special moment conditions (Dicker, 2014). The optimal estimation

method of the error variance in high dimensional regression model is beyond the scope of this paper.

Here, for a statistical testing purpose, we propose to simply use the restricted least-squares estimator

σ̂2 =
1

n− (d+ 1)
eT e, (2.7)

where e is the null residual vector as above. Our estimator is feasible even when p > n. To summarize,

we provide a final corollary for our feasible test.

Corollary 1 (Feasible test). Under the conditions of Theorem 1 and using the variance estimator (2.7),

our rejection rule (2.6) is asymptotically correct, that is,

P
(
Qn > σ̂2Φ−1(1− α)

)
→ α,

for any size α ∈ (0, 1).

2.2 Power theory for free alternatives

In order for the limiting power to be nontrivial, we consider the local alternatives with weak signal length

‖β‖2 =
∑p

i=1 β
2
i asymptotically proportional to

√
p/n. The factor n−1 comes from the low-dimensional

case (when p is small) and the extra factor p1/2 turns out to be an appropriate rate in high dimensions

from our proofs. See Introduction for more details about the rate. Our local alternative is therefore given

by

H1 : h2 := lim
n→∞

n
√
p
‖β‖2 ∈ (0,∞). (2.8)

Under the null hypothesis (2.4) we have h2 = 0.

As mentioned in the introduction, we specify more structures on β while allowing it to be non-sparse.

Let the spectral decomposition of the sample covariance matrix be

Sn :=
1

n
X̃T X̃ = UnΛnU

T
n ,

where Λn = diag(λ1, . . . , λp) is a diagonal matrix with the eigenvalues of Sn on the diagonal, and

Un = (u1, . . . , up) is an orthogonal matrix whose columns are the corresponding eigenvectors. Define

the empirical spectral distribution of Sn by

FSn(x) =
1

p

p∑
i=1

1 (λi ≤ x) .

Observe that our weighting matrix Sn shares the same set of positive eigenvalues with Sn, and their

empirical spectral distributions satisfy the equation

FSn =
(

1− p

n

)
I[0,∞) +

p

n
FSn ,
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where I[0,∞) is a step function with value 1 on [0,∞) and zero otherwise. We are interested in the free

alternatives such that the projections of coefficient vector β on the eigenbasis of Sn are asymptotically

independent of the eigenvalues. More precisely, define the weighted empirical spectral distribution

FSn(x;β) :=
1

βTβ

p∑
i=1

(
uTi β

)2
1 (λi ≤ x) ,

where uTi β is the i-th eigenbasis coordinate of β and βTβ =
∑p

i=1

(
uTi β

)2
by Pythagorean theorem. Note

that FSn(x;β) only depends on the direction of β. We assume that FSn(x;β) satisfies the following

condition:

Assumption 3. The direction of coefficient vector β is free in the sense that

FSn(x;β)− FSn(x)→ 0

almost surely for all x ∈ [0,∞) unless β = 0p.

In other words, the eigenvectors of Sn do not contain the information of the underlying regression vector β

in large samples. This is an interesting case where the eigenmatrix Un behaves as it is(were) asymptotically

uniformly distributed over orthogonal matrices; see, e.g., Bai et al. (2007), Pan (2014), Xia et al. (2013),

Xi et al. (2020), and Chapter 10 of Bai and Silverstein (2010) for more discussions of this interesting

property.

Theorem 2 (Oracle Power). Under the conditions of Theorem 1 and Assumption 3, suppose moreover

that:

(i) λmax(Sn) = OP(1), λmax(Σ) = O(1) and λmax

(
E
[
x̄x̄T

])
= O(1).

(ii) var
[
xTt xt

]
= oP(n2), or more generally, the diagonal elements of the n × n matrix Sn concentrate

around their average with a vanishing sample variance, that is,

1

n

n∑
t=1

(
Sn(t, t)− 1

n
tr(Sn)

)2
P−→ 0, (2.9)

where Sn(t, t) denotes the t-th diagonal element of Sn.

(iii) E(xTt ξn)4 is bounded in n for each sequence of unit vectors {ξn}.

Under the null (2.4) with h = 0 or under the local alternatives (2.8),

Qn
σ2n
− h2√

2σ2n
$n

d−→ N (0, 1) ,

where

$n =

√∫
x2dFSn(x)− p

n

(∫
xdFSn(x)

)2

=

√
n

p
· var

[
Λn | FSn

]
, (2.10)

and Λn is a random variable from the (random) spectral distribution FSn, provided that $n is bounded

away from zero with probability approaching 1.
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Remark 1 (General alternatives). The results remain true for non-free alternatives, that is, the alternative

beyond Assumption 3, with a general form

$n =

∫
x2dFSn(x;β)− p

n

∫
xdFSn(x;β)

∫
xdFSn(x)√∫

x2dFSn(x)− p
n(
∫
xdFSn(x))2

depending on the unknown direction of the underlying coefficients β. For example, consider the adaptive

coefficient vector β = UnΛ
s/2
n 1p (or those in the same direction) as in the first set of simulations in

Goeman et al. (2006). It is not hard to verify that for all s > 0

$n =

√
n

p
· var

[
Λn | FSn

]
· p
n

cov
[
Λn,Λ

1+s
n | FSn

]
var
[
Λn | FSn

]
· E
[
Λsn | FSn

] ,
and the same holds for s ≤ 0 if we set 0s = 0. In general, when β is arbitrary (but not free), the departure

$n does not have a tractable form to produce an interesting theory here, and thus we leave it for future

study.

Remark 2 (Time-variation adjustment). The kurtosis condition (iii) is not necessary if the concentration

condition (2.9) holds in the strictest sense: all the diagonal elements of Sn are equal. This is possible by

construction if we substitute x̃t by the time-variation adjusted data (Zheng and Li, 2011) given by

x̃t,adj =
x̃t
‖x̃t‖

·
√

tr(Sn).

The theorem remains true for the adjusted data if max1≤t≤n

∣∣∣ x̃Tt x̃ttr(Sn)
− 1
∣∣∣ P−→ 0; see the examples in Lemma

7, Lemma 8 or Corollary 3 in El Karoui (2009). We include more discussions in the supplementary

document (He et al., 2020).

We offer more general remarks on the conditions. Condition (i) is a convenient way to control the

magnitudes of the associated quadratic forms. With more technical arguments we may replace them by

weaker moment conditions on the eigenvalues to allow for the case p/n→∞, see Chen and Pan, 2012, but

we do not pursue the details here. In the supplementary document (He et al., 2020) we check the condition

for examples including cross-sectional (in)dependent, moving-average and autoregressive predictors. The

predictors can be cross-sectionally dependent in a weak sense according to the definition in Chudik et al.

(2011); see also Onatski (2012) for some special factor models. We use the boundedness of λmax(Sn) for

the convergence of the moments of FSn(x;β) towards that of FSn(x); see, e.g., Bai and Silverstein (1998)

for some sufficient conditions for bounding λmax(Sn) in models associated with independent data. In

practice, one may calculate λmax(Sn) and justify the condition from the independent data case. The last

part of the condition controls the de-meaning effect in our estimation. For the aforementioned example

models we typically have λmax

(
E
[
x̄x̄T

])
= 1

nO (λmax(Σ)) = O(n−1); we require a much weaker rate in

general to allow for complicated time–series dependence structures.

Conditions (ii) is a cross–sectional concentration condition. The first part of the condition is for

understanding the probabilistic behaviour, while the data may justify the second part. The condition is
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trivial for a high dimensional Gaussian vector xt ∼ N (0p,Σ) with covariance matrix Σ having bounded

eigenvalues in n. More generally, we allow the linear model xt = Σ1/2ft, where ft has independent entries

with a bounded fourth moment. A latent factor model is also possible, such as xt = Φ1ηt + vt, where all

the entries of ηt ∈ Rk and vt ∈ Rp are independent and Φ1 ∈ Rp×k is a factor loading matrix. The factor

dimension k may be small in a sparse model or may diverge to infinity in a dense model. We summarize

all these examples into a class of affine models below:

Proposition 1. The following affine model satisfies condition (2.9) in Theorem 2 under Assumption 1,

provided condition (i) therein:

(a) The random vectors xt = Φft are identically distributed, not necessarily independent, with covariance

matrix Σ = ΦΦT ∈ Rp×p, where the loading matrix Φ = [φ1, . . . , φp+k] ∈ Rp×(p+k) may be asymmetric,

the latent components ft ∈ R(p+k) has identity covariance matrix by construction, and the number of

extra components k = k(n) ≥ 0 may be bounded or diverge to infinity at an arbitrary rate.

(b) The unobserved entries of ft = (ft,1, . . . , ft,p+k) are mutually exogenous such that E [ft,i | ft,l, l 6= i] =

0 and E|ft,i|4 are bounded by some large constant not depending on n for all i.

Otherwise, condition (2.9) is trivial if we adjust for the time variation; see Remark 2.

We allow high level dependence among the latent components beyond the mean. The conditions could

be replaced by martingale analogies if there exists a natural ordering for the components. Condition

(b) may be relaxed using less order of moments or replaced by more general concentration conditions

like in Lemma 7, Lemma 8, or Corollary 3 in El Karoui (2009), but we do not pursue further details

here. Assumption 1 and the conditions (i) in Theorem 2 simplify some technical arguments but are not

really necessary for the above proposition, and we may relax them with the following spectral conditions:

‖Σ‖2 = o(n2), and λmax(Sn) · λmax

(
E
[
x̄x̄T

])
= oP(n2).

The above proposition has a much wider scope beyond a factor model. For example, it includes the

high-dimensional moving average model in Appendix B (He et al., 2020) given by

xt = ψwt−1 + wt =
[
ψT 1/2, T 1/2

]vt−1
vt

 =: Φft

where ψ ∈ (−1, 1) is a scalar lagged coefficient, and wt = T 1/2vt for some covariance matrix T with

bounded spectral norm and the entries of random vectors {vt} are i.i.d. with zero mean, unit variance and

bounded kurtosis. By similar arguments but with a truncation trick, one may also apply the proposition

to the high-dimensional autoregressive model

xt = φxt−1 + wt,
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where φ ∈ (−1, 1) is a scalar lagged coefficient and wt is the same innovations as above. Take an

arbitrary diverging integer sequence K = K(n) → ∞, and decompose its infinite-order moving average

representation as

xt =

∞∑
l=0

φlwt−l =

K∑
l=0

φlwt−l +

∞∑
l=K+1

φlwt−l.

Then we can rewrite the leading part

K∑
l=0

φlwt =
[
φKΣ1/2, . . . , φΣ1/2,Σ1/2

]
vt−K

...

vt

 =: Φft,

and verify that reminder term is asymptotically negligible. See He et al. (2020) for details.

Our asymptotic approximation in Theorem 2 is data adaptive, and allows a diverging sequence of the

empirical spectral distributions FSn . If a limiting spectral distribution, say, F does exist, we can easily

deduce the following corollary:

Corollary 2 (Limiting spectral distribution). Under the conditions of Theorem 2, suppose moreover that

FSn tends to some non-degenerate law F with probability one. The asymptotic result remains true by

substituting the limit F for FSn in (2.10).

Searching for the limiting distribution function F is an active research area in random matrix theory,

that traces back to at least Marčenko and Pastur (1967): if the entries {xt,j : t = 1, . . . , n, j = 1, . . . , p}

are i.i.d. random variables with variance τ2, the limit F (x) exists and has the density function

f(x) =
1√

2πxcτ2

√
(b− x)(x− a) if x ∈ (a, b) and otherwise zero, (2.11)

and has a point mass 1−1/c at the origin if c > 1, where b = τ2(1+
√
c)2, a = τ2(1−

√
c)2 and again p/n→

c ∈ (0,∞). For this particular limit, we can verify that$n → τ2 with probability one. That is, the limiting

power is stable over the concentration ratio p/n. We refer to Theorem 3.10 and Theorem 4.1 in Bai and

Silverstein (2010) for generalization to non-i.i.d. models. When {xt} is a high dimensional autoregressive

and moving average (ARMA) time series, or satisfies certain temporal dependence condition, Pan et al.

(2014) have established the limiting spectral distribution F (x); see also Zhang (2006). Further studies in

linear time series we refer to, e.g., Jin et al. (2009), Liu et al. (2015) and many references therein. For

elliptical and high-frequency data, we refer to El Karoui (2009), Zheng and Li (2011) and Xia and Zheng

(2018). To extend these results to large dimensional sample correlation matrix (i.e. the sample covariance

matrix for standardized data), we refer to El Karoui (2009) again and Gao et al. (2017).

Observe that the variance estimator (2.7) is still consistent under the local alternatives (2.8). Our

feasible test therefore achieves the oracle testing power, in an adaptive sense:
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Corollary 3 (Feasible power). Under the conditions of Theorem 2, we have

P
(
Qn > σ̂2Φ−1(1− α) | Xn

)
− Φ

(
Φ−1(α) +

h2√
2σ2n

$n

)
P−→ 0

for any size α ∈ (0, 1).

Note that our feasible test has a non-trivial power even when p > n. When the true signal length is

not negligible in the variance estimation (2.7), the bias of our restricted estimator may (slightly) reduce

the finite–sample power relative to the theoretical limit. As noted above, in such case one may improve

the power by using any better variance estimator in some special cases (Fan et al., 2012; Dicker, 2014).

We show in simulations that our restricted estimator provides a good performance in sufficiently high

dimensions (and large samples), and leave the finite-sample improvements for future research.

Finally, we show that the proposed unweighted test is uniformly most powerful for the free alternatives

among a large class of quadratic tests, under regularity conditions. To motivate our competing tests, first

consider the weighted quadratic statistic in the case p < n given by

Q̃n =
1

n
eT X̃S−1n X̃T e.

Standardizing the residuals by σ̂ gives the F -test when zt = 1; see, e.g., Zhong and Chen (2011) and

Wang and Cui (2013) for the power analysis of F -test when p/n→ c ∈ (0, 1) and {xt} is an i.i.d. sequence.

When p > n, however, the F test has no testing power as Q̃n/σ̂
2 ≡ n−(d+1)

n is degenerate. To compare

F statistic with our equally weighted test statistic, one may again remove the diagonal elements in the

weighting matrix, standardize the quadratic form, and consider the test statistic: Qn = 1√
2‖An‖

eTAne,

where An = 1
nX̃S

−1
n X̃T − diag

(
1
nX̃S

−1
n X̃T

)
with a slight abuse of the notation. We can verify that

Theorem 1 remains true when p/n→ c ∈ (0, 1) and λmin(Sn) is bounded away from zero. Moreover, it is

elementary to show that this testing procedure is asymptotically equivalent to the F -test when zt = 1.

Now, in the spirit of Ledoit and Wolf (2012), consider an arbitrary non-negative weighting function δ

on [0,∞) and the associated weighing matrix

Wn(δ) =
1

n
X̃δ(Sn)X̃T ,

where δ(Sn) is a matrix that transforms the eigenvalues of Sn by the function δ but keeps the eigenvectors.

Removing the diagonal elements gives An(δ) = W (δ)−diag(W (δ)) and standardizing the quadratic form

again yields the test statistic:

Qn(δ) =
1√

2 ‖An(δ)‖
eTAn(δ)e.

It is clear that our equally-weighted test and the first weighted test (F test) both belong to this class

asymptotically, but corresponding to different weighting functions δ(x) = 1 and δ(x) = x−11(x > 0)

respectively. Furthermore, we can verify that the null distribution remains true by substituting the

weighting matrix An = An(δ) everywhere.
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Our aim in this section is to search for an optimal weighting function δ with the highest testing power

among this universe. Using random matrix theory, we can derive the limiting distribution of Qn(δ) under

our local alternatives (2.8).

Theorem 3. Suppose the conditions of Theorem 1 and Theorem 2 hold after substituting An(δ) for An

therein, and moreover that the sample variance of the diagonal elements of Wn(δ) tends to zero. Under

the null (2.4) with h = 0 or the local alternatives (2.8),

Qn(δ)

σ2n
− h2√

2σ2n
$n(δ)

d−→ N (0, 1) ,

where

$n(δ) =

∫
x2δ(x)dFSn(x)− p

n

∫
xdFSn(x) ·

∫
xδ(x)dFSn(x)√∫

x2δ2(x)dFSn(x)− p
n

(∫
xδ(x)dFSn(x)

)2
=$n · corr

[
Λnδ(Λn),Λn | FSn

]
,

with $n and Λn from Theorem 2, if provided that var
[
Λnδ(Λn) | FSn

]
is bounded away from 0 almost

surely.

Like in Theorem 2, we require a concentration condition on the diagonal elements of Wn(δ). We can

verify the condition directly from the data, as the weighting matrix Wn(δ) is observable for any given δ.

From a population perspective, we argue that this condition is natural at least in the independent model.

Let λ+min(Sn) denote the smallest positive eigenvalue of Sn.

Proposition 2. The empirical spectral distribution FSn tends to a limit F solving the equation in Silver-

stein (1995), and the sample variance of the diagonal elements of Wn(δ) tends to zero for every function

δ : [0,∞)→ R continuous on [lim infn λ
+
min(Sn), lim supn λmax(Sn)] when:

(i) xt = Σ1/2ft, where {ft,i : t = 1, . . . , n, i = 1, . . . , p} is a double array of i.i.d. random variables with

zero mean, unit variance and 4 + ι moment bounded in n for some ι > 0;

(ii) the covariance matrix Σ is non-negative definite with spectral norm bounded in n, and with empirical

spectral distribution Hn
w−→ H a proper distribution function.

Hence, Theorem 3 remains true with either FSn or its limit F , under the conditions of Theorem 1 and

Theorem 2 after substituting An(δ) for An therein.

Recall that the variance estimator (2.7) is still consistent under the local alternatives (2.8). The

asymptotic power of our feasible weighted test follows:

Corollary 4 (Power of weighted tests). Under the conditions of Theorem 3,

P
(
Qn(δ) > σ̂2Φ−1(1− α) | Xn

)
− Φ

(
Φ−1(α) +

h2√
2σ2n

$n(δ)

)
P−→ 0,

for any size α ∈ (0, 1).
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Now, maximizing the asymptotic power of our test (2.6) is equivalent to maximizing the asymptotic

departure $n(δ) with respect to δ. Note that the (random) correlation coefficient is smaller than 1 almost

surely unless δ(x) is a constant for x > 0 (or at least on the spectrum of Sn). In other words, our equally

weighted test maximizes the asymptotic test power, for the local free alternatives.

2.3 Towards a more general model and the robust approach

In the previous subsections, we have studied autoregressive model (2.1) involving the nuisiance variables

zt = (1, yt−1, . . . , yt−d) with

yt−i = Biyt = Bi (1− θ(B))−1 (θ0 + wt) , wt = xTt β + εt,

where B denotes the lag operator and θ(B) = θ1B+ θ2B
2 + . . .+ θdB

d. By condition (iii) in Assumption

2, we can expand that (1− θ(B))−1 =
∑∞

l=0 ψ(l)Bl for some lagged coefficients {ψ(l)} with ψ(0) = 1,

and represent yt−i in an infinite-order moving average form given by

yt−i = α+

∞∑
l=1

ψ(l + i− 2)wt−l, i = 1, . . . , d,

with a common mean α = Eyt =
∑∞

l=0 ψ(l)θ0. Clearly, the autoregressor yt−i is a special case of the

nuisance variables (2.3) with αi = α, ψi(l) = ψ(l + i− 2), and no current shocks ri,t.

From now on, we consider the universal model (2.2) with the general nuisance variables given in (2.3).

Throughout we assume that the past effect dies away with absolutely summable moving coefficients, that

is,
∑∞

l=1 |ψi(l)| <∞ for all i = 1, . . . , d. Note that we have added some contemporary information

rt = (rt,1, . . . , rt,d)
T ,

and for identification purposes only we assume that E
[
rt | xTt−lβ, εt−l, l = 1, 2, . . .

]
= 0d. We extend the

sigma algebra Fn,t in Assumption 2 with that generated by {rt} if necessary. As noted in the introduction,

it is possible to relax the strong exogeneity condition using more general martingale theory with the cost

of more complications but we leave it for future works.

Theorem 4. Theorem 1 and Corollary 1 remain true. Furthermore, we may relax condition (iii) in

Theorem 1 as follows:
n−l∑
t=1

An(t+ l, t) = oP

(
n

1
2 ‖An‖

)
. (2.12)

Condition (2.12) is only slightly weaker than the condition (iii) in Theorem 1, if the off-diagonal

elements cancel each other. It is not necessary for nuisance vectors {zt} containing only contemporary

information, that is, ψi(l) = 0 for all l and i. More generally, we can relax the condition as follows:

n−l∑
t=1

An(t+ l, t)1(ψi(l) 6= 0) = op(n
1/2 ‖An‖), for all i = 1, . . . , d.
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Nevertheless, according to our simulations, the condition may exclude some special time-series covariates

{xt} such as a high-dimensional autoregressive or moving average sequence with common coefficients

across all dimensions. For these particular examples and more irregular scenarios, we relax the condition

and provide a robust null distribution as follows:

Theorem 5. Assume the conditions of Theorem 1 except condition (iii) therein. Let

Ψi =
∞∑
l=1

ψi(l)L
l
n =

n∑
l=1

ψiL
l
n, (2.13)

and Ln be the n× n lower shift matrix with ones on the subdiagonal and zeros elsewhere. Under the null

hypothesis (2.4),
Qn

σ2n
√

1− ρ2n
d−→ N (0, 1) ,

with the irregularity coefficient ρ2n = ‖µn‖2 depending on

µn =
1

n1/2
∥∥∥Ãn∥∥∥σnE

[
Ω−

1
2ZT Ãnε | Ãn

]
=

σn

n1/2
∥∥∥Ãn∥∥∥Ω−1/2

[
0, tr

(
ΨT

1 Ãn

)
, . . . , tr

(
ΨT
d Ãn

)]T
,

if provided that ρ2n is bounded away from 1 almost surely and Ω̂
P−→ Ω = E

[
ztz

T
t

]
.

The null distribution has a smaller asymptotic variance if the coefficient ρ2n is non-negligible. The variance

loss is due to the estimation of nuisance parameters. The condition (iii) in Theorem 1 implies that ρ2n
P−→ 0

and therefore simplifies the asymptotic limit. We note that ρ2n < 1 with probability 1 in each sample,

and excluding the boundary is a rather technical requirement. For the extreme event with ρ2n → 1, we

may need a different testing procedure as our test statistic Qn
P−→ 0; we leave this for future study.

Now, for both regular and irregular scenarios, one may reject the null (2.4) if

Qn > σ̂2
√

1− ρ̂2Φ−1(1− α), (2.14)

where α is the size of the test, and σ̂2 and ρ̂2 are consistent estimators of in the sense that σ̂2/σ2n
P−→ 1

and (1− ρ̂2n)/(1− ρ2n)
P−→ 1. In what follows, we again use variance estimator σ̂2 given in (2.7). For ρ2n we

propose the restricted estimator

ρ̂2 =
eT ÃTnPZÃne

eT ÃTn Ãne
, (2.15)

using the restricted residual e as for the variance estimator (2.7). Observe that ρ̂2 is between 0 and 1

as well by construction. To our knowledge, estimating the coefficient ρ2n is a novel statistical topic and

it is beyond the scope of this paper to investigate the optimal estimation method. We prove that this

restricted estimator is consistent under the null and immediately deduce the following corollary:
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Corollary 5. Under the conditions of Theorem 5 and using the estimators (2.7) and (2.15), our general

rejection rule (2.14) is asymptotically correct.

For completeness, we also generalize the power theory for the local free alternatives. We start again

from relaxing the structure of nuisance variables for our usual test (2.6):

Theorem 6. Theorem 2 and Theorem 3 remain true under the conditions of Theorem 4, if provided that

λmax

(
E
[
viv

T
i | X

])
= oP

(
np−1/2

)
, or vTi vi = oP

(
np−1/2

)
, (2.16)

where vi = (v1,i, . . . , vn,i)
T and vt,i =

∑
s≤0 ψi(t − s)εs +

∑
s≤0 ψi(t − s)xTs β + rt,i, for all i = 1 . . . , d.

Hence, our proposed test is again the most powerful one against the local free alternatives asymptotically.

We may relax the small-o order in (2.16) to be big-o order by carefully checking the proofs, but we keep

the stronger one for our next theorem. Note that vi depends only on the initial values {εs, xTs β : s ≤ 0}

and the contemporary shocks {rt,i : t = 1, . . . , n}. For the autoregressive process (2.1), we can show that,

for every i, the entries of vi satisfy the homogeneous linear difference equation:

vt,i = θ1vt−1,i + . . .+ θdvt−d,i, t ≥ d+ 1. (2.17)

and therefore {vt,i} is square summable in probability, that is, vTi vi =
∑n

t=1 v
2
t,i = OP(1). Then the

spectral condition (2.16) is trivial when p = o(n2).

Finally, we develop the power theory for our robust test (2.14). Let ξn = β/ ‖β‖ denote the direction

of β under the alternatives or an arbitrary unit vector when β = 0p.

Theorem 7. Suppose all the conditions of Theorem 6 hold under both the null and alternatives, and we

relax the condition (iii) in Theorem 1. In addition, suppose the direction ξn is also free in the sense that

ξTn

(
1

n
X̃TΨT

i X̃

)
ξn −

1

p
tr

(
1

n
X̃TΨT

i X̃

)
P−→ 0, i = 1, . . . , d. (2.18)

Under the null (2.4) with h = 0 or under the local alternatives (2.8),

Qn

σ2n
√

1− ρ2n
− h2√

2σ2n

√
1− ρ2n$n

d−→ N (0, 1) .

Relaxing the additional freeness condition (2.18) leads to a more technical but not very useful limit

that depends on the unknown direction of β. Hence, for similar reasons in Remark 1, we postpone the

relaxations to the supplementary document (He et al., 2020).

By showing the consistency of ρ̂2 under the local alternatives, we can deduce the following corollary:

Corollary 6. Under the conditions of Theorem 7 and using the estimators (2.7) of σ2 and the estimator

(2.15) of ρ2,

P
(
Qn > σ̂2

√
1− ρ̂2Φ−1(1− α)|Xn

)
− Φ

(
Φ−1(α) +

h2√
2σ2n

√
1− ρ2n$n

)
P−→ 0

for any size α ∈ (0, 1).
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Remark 3. We may generalize the results for a general weight function δ. Substituting An by An(δ) in

Theorem 5, we can extend the definition of ρ2n = ρ2n(δ) and µn = µn(δ). To avoid confusions, from now

on we denote ρ2n and µn as the values associated with δ(x) ≡ 1. Under the conditions of Theorem 6 where

the conditions also hold for An(δ) replacing An,

Qn(δ)

σ2n
√

1− ρ2n(δ)
− h2√

2σ2n

$n(δ)− ρn(δ, 1) ·$n√
1− ρ2n(δ)

d−→ N (0, 1) ,

where $n and $n(δ) are given in Theorem 2 and 3 respectively, and ρn(δ, 1) := µTn (δ)µn lies between −1

and 1 almost surely. Recall that $n(δ) ≤ $n, and therefore the departure

$n(δ)− ρn(δ, 1) ·$n√
1− ρ2n(δ)

≤ 1− ρn(δ, 1)√
1− ρ2n(δ)

$n,

where the upper bound approaches
√

1− ρ2n$n when µn(δ) − µn → 0d. In other words, our equally-

weighted test (with δ(x) ≡ 1) maximizes the asymptotic power locally against the competitors with a

similar nuisance effect µn(δ) = µn + oP(1). Optimizing the power beyond such neighborhood may be

numerically feasible with the estimator (2.15) of ρ2n(δ) and the estimator of ρn(δ, 1) given by

ρ̂n(δ, 1) =
eT ÃTn (δ)PZÃne√

eT ÃTn (δ)Ãn(δ)e

√
eT ÃTn Ãne

,

where Ãn(δ) is the lower triangular part of An(δ). It requires much more works to establish the uni-

form convergence of the asymptotic approximations over a large class of functions δ, that are certainly

interesting for future studies.

3 Simulation

In this section, we study the empirical size and the power performance of the proposed tests using a

Monte Carlo experiment. Throughout we choose an asymptotic size of α = 5%, and calculate the finite-

sample size and power over 5000 replications using the default seed in MATLAB 2019b. Without loss of

generality, we first generate the exogenous predictors and errors with zero means, and then generate the

target variable using autoregressive model (2.1) with intercept θ0 = 0. However, this is unknown to the

statistician who always demeans the predictors in each sample and estimate the intercept. We fix the order

of autoregressive d = 3, and use the autoregressive coefficients (θ1, θ2, θ3) = (0.30, 0.08, 0.11) calibrated

from our empirical application. We simulate independent innovations ηt from the standardized student

t-distribution with five degrees of freedom, that are independent of the regressors. Then we generate

the regression errors εt = σnηt with an adaptive variance σ2n = $n/
√

2 in each sample, and therefore

the asymptotic power only depends on the length of the coefficient β and, in general, the irregularity

coefficient ρ2n; see Corollary 3 and 6 in Section 2.

In each replication, we consider exogenous variables from four data generating processes:
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Table 1: Size and power (%) of the tests against uniform stochastic coefficient (i) at level α = 5% with

p/n = 1
4 ,

1
2 , 1, 2, 4 and

√
p/n = 0.05. The columns are for: (i) the feasible test using σ̂2n and assuming

ρ2n = 0, (io) the oracle test using the true variance σ2n and assuming ρ2n = 0, (i*) the robust test using σ̂2n

and ρ̂2n.

IID CSD MA1 AR1

p/n (i) (io) (i*) (i) (io) (i*) (i) (io) (i*) (i) (io) (i*)

H0 : ‖β‖2 = 0

25/100 5.4 5.2 5.7 5.6 5.6 6.0 5.7 6.1 6.1 6.2 6.1 6.6

100/200 5.5 5.2 5.7 5.8 6.2 5.9 5.7 5.7 6.2 5.8 5.5 6.4

400/400 5.4 5.4 5.5 5.9 6.1 6.0 4.8 5.1 5.7 4.4 4.5 5.4

1600/800 5.6 5.6 5.6 6.1 5.9 6.1 4.4 4.5 5.8 4.1 4.3 6.3

6400/1600 5.4 5.2 5.4 5.8 5.8 5.8 3.0 3.1 5.2 2.7 2.8 5.7

H1
a : ‖β‖2 = 1×

√
p
n

25/100 23.2 25.5 23.7 23.4 25.0 24.1 23.9 25.3 25.2 24.3 25.2 25.8

100/200 24.9 27.1 25.2 24.9 26.5 25.2 24.7 26.2 26.1 25.8 26.8 27.5

400/400 25.6 28.5 25.8 26.8 28.0 26.9 23.2 24.9 25.4 21.3 22.5 23.8

1600/800 26.1 28.7 26.1 26.3 28.8 26.4 19.2 21.5 23.1 19.1 21.0 24.3

6400/1600 24.2 27.7 24.3 25.5 28.0 25.6 13.7 15.5 20.7 13.2 14.7 21.6

H2
a : ‖β‖2 = 2×

√
p
n

25/100 45.1 50.0 45.8 44.1 46.5 44.8 42.5 45.6 43.8 43.3 45.6 45.4

100/200 50.5 56.0 51.3 49.7 53.4 50.1 47.7 50.8 49.3 48.7 53.0 50.8

400/400 53.8 60.5 54.0 54.1 58.3 54.4 49.2 54.0 51.9 47.0 51.8 50.8

1600/800 54.9 61.9 55.0 56.8 62.1 56.9 44.1 49.9 49.7 42.5 47.9 49.6

6400/1600 55.2 62.9 55.3 57.7 63.5 57.8 35.8 42.0 46.7 34.0 39.5 46.4

H3
a : ‖β‖2 = 5×

√
p
n

25/100 85.1 90.1 85.8 78.6 82.7 79.3 77.0 81.0 78.1 76.4 80.4 77.7

100/200 92.3 95.8 92.4 89.5 92.4 89.6 87.3 90.9 88.0 87.8 91.1 88.7

400/400 95.2 98.0 95.2 94.4 96.8 94.5 92.9 95.9 93.6 91.4 94.7 92.6

1600/800 96.9 98.7 96.9 96.9 98.5 96.9 93.0 96.8 95.1 93.4 96.5 95.3

6400/1600 97.4 98.9 97.4 98.2 99.2 98.2 91.0 95.6 94.8 89.0 94.3 94.0
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(1) xt = vt, where {vt} have i.i.d. standardized t5 entries independent over time t;

(2) xt = T
1/2
p vt with the error covariance matrix Tp ∈ Rp×p equaling to the Toeplitz matrix with i, j-th

elements ρ|i−j| and ρ = 0.5;

(3) xt = 0.3T
1/2
p vt−1 + T

1/2
p vt, a high dimensional moving average model;

(4) xt = 0.3xt−1 + T
1/2
p vt, a high dimensional autoregressive model.

We generate the direction of the regression coefficients in the following ways respectively:

(i) uniformly over the Rp unit sphere;

(ii) the average direction of the eigenvectors of the population correlation matrix Tp.

The first case is a stochastic coefficient model that is always free. The second one is a deterministic

coefficient model, that is free at least for the independent models (1) and (2), see Bai et al. (2007) and

Pan (2014), and shows similar performance as that of a free model in the time-series models (3) and

(4). In the supplementary document (He et al., 2020), we have also implemented the adaptive regression

directions as in the first set of simulations in Goeman et al. (2011) which shows that our general asymptotic

approximation applies for non-free alternatives as well; see Remark 1.

We compare the size and power for the local departure level

h2 =
n
√
p
‖β‖2 = 0, 1, 2, 5,

corresponding to the coefficient vector

β = ‖β‖ ξ = h

(√
p

n

) 1
2

ξ,

where ξ denotes the direction we generated above in case (i) or (ii). We vary the concentration ratios

p/n = 1
4 ,

1
2 , 1, 2, 4 to obtain a wide range of (p, n), while fixing the order of local alternatives

√
p/n = 0.05

or
√
p/n = 0.1.

Table 1 and Table 2 report the results for different directions, with
√
p/n = 0.05. We report the size

and power for three different tests: the feasible test using the estimated variance σ̂2n for regular scenarios

(i.e. assuming ρ2n = 0), the oracle test using the true variance σ2n for regular scenarios (i.e. assuming

ρ2n = 0), and the robust test using the estimated variance σ̂2n and the estimated irregularity coefficient

ρ̂2n for both regular and irregular scenarios. Overall, we observe that the feasible test performs similarly

to the oracle test. The size and power of the feasible tests and oracle ones are close to the asymptotic

level for independent models, but become smaller for time-series predictors as suggested by our theory

especially for larger concentration ratio p/n. On the other hand, the robust test maintains a stable size

and power across all scenarios. While by construction the robust test always has a larger size and power

than the feasible test, the differences are small for independent predictors according to our theory.
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Table 2: Size and power (%) of the tests against deterministic coefficient (ii) at level α = 5% with

p/n = 1
4 ,

1
2 , 1, 2, 4 and

√
p/n = 0.05. The columns are for: (ii) the feasible test using σ̂2n and assuming

ρ2n = 0, (iio) the oracle test using the true variance σ2n and assuming ρ2n = 0, (ii*) the robust test using

σ̂2n and ρ̂2n.

IID CSD MA1 AR1

p/n (ii) (iio) (ii*) (ii) (iio) (ii*) (ii) (iio) (ii*) (ii) (iio) (ii*)

H0 : ‖β‖2 = 0

25/100 5.6 5.1 5.8 5.9 5.7 6.2 5.8 6.1 6.3 5.9 5.9 6.3

100/200 5.6 5.7 5.7 6.2 6.3 6.3 6.0 6.0 6.5 5.3 5.1 5.8

400/400 5.2 5.4 5.3 6.0 5.9 6.1 4.7 4.7 5.3 5.0 4.9 6.1

1600/800 5.7 5.5 5.7 6.0 6.0 6.0 4.5 4.7 6.0 3.8 4.0 5.7

6400/1600 4.9 4.9 4.9 5.4 5.4 5.4 3.0 2.9 5.3 2.5 2.4 5.3

H1
a : ‖β‖2 = 1×

√
p
n

25/100 23.5 24.9 24.2 24.9 25.8 25.5 24.4 25.6 25.6 24.1 24.9 25.4

100/200 24.9 27.3 25.2 26.8 28.2 27.3 25.0 26.5 26.5 23.7 24.8 25.5

400/400 25.3 28.6 25.5 25.8 27.5 26.0 22.4 24.4 24.7 22.3 24.4 24.8

1600/800 25.6 28.5 25.7 24.7 27.0 24.8 19.2 21.3 23.6 18.1 20.2 22.6

6400/1600 24.3 27.8 24.5 26.3 28.6 26.4 15.0 16.8 21.9 13.4 15.2 20.8

H2
a : ‖β‖2 = 2×

√
p
n

25/100 45.1 48.8 45.8 45.9 47.9 46.5 44.2 47.3 45.6 43.9 46.6 45.4

100/200 50.0 55.6 50.4 50.6 53.8 51.1 48.4 52.6 50.2 46.5 50.5 48.7

400/400 52.7 59.1 52.9 54.0 58.8 54.3 47.4 53.0 50.7 47.5 52.2 50.8

1600/800 54.0 60.8 54.1 54.5 59.8 54.6 44.5 49.8 49.8 42.0 48.3 49.7

6400/1600 54.4 61.0 54.6 57.0 62.8 57.1 37.5 43.4 47.8 33.0 39.1 45.4

H3
a : ‖β‖2 = 5×

√
p
n

25/100 83.0 88.5 83.6 82.7 86.3 83.2 80.5 84.9 81.3 80.7 85.2 81.9

100/200 92.0 95.6 92.2 90.5 93.8 90.7 88.9 92.5 89.8 87.6 91.7 88.6

400/400 95.0 97.9 95.1 95.0 97.1 95.0 92.6 95.7 93.6 92.6 95.6 93.7

1600/800 96.7 98.7 96.7 97.1 98.5 97.1 93.2 95.8 94.5 92.6 95.8 94.5

6400/1600 97.9 99.3 97.9 98.1 99.1 98.1 91.6 95.5 94.9 88.7 94.2 94.1
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In the supplementary document (He et al., 2020) we repeat the analysis for a larger order of
√
p/n =

0.1. The conclusions are qualitatively the same. The power difference between the feasible and oracle

tests becomes slightly larger, as the error variance estimator contains a larger finite-sample upward bias

under the alternatives.

4 Application

Our empirical application is to test whether the exogenous macroeconomic variables at the ‘FRED-MD’

databaset:

https://research.stlouisfed.org/econ/mccracken/fred-databases/

are overall significant for forecasting the monthly growth rate, on a percentage scale, of US industrial

production index, an important indicator of macroeconomic activity. Our response variable is yt =

log (IPt/IPt−1) × 100, where IPt denotes the US industrial production index for the month t. The

database has similar predictive content as that in Stock and Watson (2002), and it is regularly updated

through the Federal Reserve Economic Data (FRED).

Our data set includes monthly observations of the industrial production index (INDPRO) and 127

other predictors from January, 1959 to February, 2020. We transform the raw datasets into stationary

forms and remove the data outliers using the MATLAB codes provided on the above website; see also

McCracken and Ng (2016) for more details of the method. Our tests use rolling windows of sample size

n = 120 months equaling to a time span of ten years. In each window we drop the variables with missing

values, leaving approximately p ≈ 120 one-month lagged standardized predictors besides lagged response

variables. Note that the standard F test is (almost) degenerate here, because the number of exogenous

variables is larger than (or very close to) the sample size. In the supplementary document (He et al.,

2020) we show that the results are very similar after adjusting for time variations (see Remark 2). Hence,

we only report the results without time variation adjustment in this section.

We compare the rolling window p-values for different autoregressive order d between 0 and 5 in Figure

1. The dashed lines indicate our benchmark significance level α = 5%. We only report the p-values for

the robust tests here, and the findings are similar for the standard tests as shown in the supplementary

document (He et al., 2020). Clearly, ignoring the impact of autoregressors shows almost all rejections and

likely overoptimistic outcomes for predictability. By including more autoregressors, the p-values stabilize

for d ≥ 3 and time-varying patterns emerge. Overall, the coefficients are jointly significant most of the

time between year 1975 and year 2000, but more recently during the first half year of 2019.
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Figure 1: Ten years (n = 120) rolling windows monthly robust p values between March, 1969 and

February, 2020 for different number of lags d = 0, 1, 2, 3, 4, 5.
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(a) No lag variable
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(b) lag d = 1
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(c) lag d = 2
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(d) lag d = 3
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(e) lag d = 4
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(f) lag d = 5
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5 Proofs

We first sketch the mathematical proofs of the main theorems, and then prove all the corollaries. The

technical and detailed proofs of the lemmas and Propositions 1 and 2 are available in the supplement

(He et al., 2020). It is not hard to check throughout that our proofs do not depend on the error variance

σ2n, if one re-parameterize β as β/σn, θ as θ/σn, and divide the variables yt and εt by σn. To simplify

presentations, we assume throughout that σ2n = 1 and use εt everywhere instead of ηt without loss of

generality. Throughout this section we denote PZ = Z(ZTZ)−1ZT as the projection matrix on the column

space of Z. Enlarging the probability space, if necessary, we define all random variables in a common

probability space with probability measure P for presentation convenience.

5.1 Proofs of Theorem 1

Throughout this subsection we assume the conditions of Theorem 1. Under the null hypothesis, we can

decompose that

Qn =
1∥∥∥Ãn∥∥∥εT (I − PZ)Ãn(I − PZ)ε

=
1∥∥∥Ãn∥∥∥εTAnε−

1∥∥∥Ãn∥∥∥εTPZÃnε−
1∥∥∥Ãn∥∥∥εTPZÃTn ε+

1∥∥∥Ãn∥∥∥εTPZAnPZε
=:Q̃n + T1 + T2 + T3,

where Q̃n has a martingale form:

√
2

‖An‖

n∑
t=1

εt

(
t−1∑
s=1

εs
1

n
x̃Ts x̃t

)
=:

n∑
t=1

∆t

and ∆t is a martingale difference array such that E(∆t|Fn,t−1) = 0. We shall show that Q̃n
d−→ N (0, 1)

using martingale central limit theorem, and show that T1, T2, T3
P−→ 0.

We need some lemmas for our proof in the end. We begin with some fundamental inequalities and

their useful implications here. The first lemma is an elementary result combining Markov inequality and

the law of iterated expectations. We use it frequently to control the asymptotic bounds of perturbation

terms.

Lemma 1 (Markov inequality). For an arbitrary sequence of measurable statistics θn and a sequence of

sub-sigma-algebra Fn, the Markov inequality implies that |θn| = OP (E [|θn| | Fn]). Note that E [|θn| | Fn]

is a Fn-measurable random variable in general.

The second is a concentration inequality for quadratic forms. The results are well-known for quadratic

forms in i.i.d. variables (see, e.g., Lemma B.26 in Bai and Silverstein, 2010), and the proof for martingale

difference array is very similar. We provide the proof in the supplementary document for completeness.
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Lemma 2 (Concentration inequality for martingale quadratic forms). Let {εt,Fn,t : t = 1, . . . , n} be a

martingale difference array with common conditional variance E
[
ε2t | Fn,t−1

]
= 1, and A be any n × n

real matrix measurable by Fn,0. If further given that E
[
|ε2t − 1|1+ι | Fn,0

]
≤ κn a.s. for some ι ∈ [0, 1],

∀t = 1, . . . , n,

E
[∣∣εTAε− tr(A)

∣∣1+ι | Fn,0] ≤M (
κn

n∑
t=1

|A(t, t)|1+ι + ‖A‖1+ι
)

almost surely for some absolute constant M depending only on ι, where A(t, t) is the t-th diagonal element

of A. Hence,

εTAε− tr(A) = OP

κ 1
1+ι
n

(
n∑
t=1

|A(t, t)|

) 1
1+ι

max
1≤t≤n

|A(t, t)|
ι

1+ι + ‖A‖

 .

The next inequality is essentially Lemma S.3 in Lam (2016). We add a necessary condition (which is

missing therein), and provide the detailed proof in the supplementary document.

Lemma 3 (A trace inequality). For an arbitrary symmetric p× p matrix A and a non-negative definite

p× p matrix B,

|tr(AB)| ≤ ‖A‖sp tr(B).

The next two lemmas verify the conditions for our martingale central limit theorem, Corollary 3.1 in

Hall and Heyde (1980).

Lemma 4. The asymptotic negligibility condition is satisfied is such a way that

max
1≤t≤n

E
[
∆2
t | Fn,t−1

] P−→ 0.

Lemma 5. The conditional variance for the martingale converges to 1, that is,

n∑
t=1

E
[
∆2
t | Fn,t−1

]
=

1∥∥∥Ãn∥∥∥2
n∑
t=1

(
t−1∑
s=1

εs
1

n
x̃Ts x̃t

)2

P−→ 1.

Our last two lemmas control the effect of nuisance variables on the residuals.

Lemma 6. εTPZε = OP(d/λmin(Ω̂)).

Lemma 7. ZT Ãnε = oP

(√
n
∥∥∥Ãn∥∥∥)

Now we can prove the null distribution using the above lemmas.

Proof of Theorem 1. We first apply Corollary 3.1 in Hall and Heyde (1980) to show that Q̃n
d−→ N (0, 1).

As the conditional variance converges in Lemma 5, it remains to verify the conditional Lindeberg condi-

tion, that is,
∑n

t=1 E
[
∆2
t1(|∆t| > δ) | Fn,t−1

] P−→ 0 for every small constant δ > 0 (with a slight abuse of
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notation). Let δ > 0, and we have

n∑
t=1

E
[
∆2
t1(|∆t| > δ) | Fn,t−1

]
=

n∑
t=1

E
[
∆2
t | Fn,t−1,∆2

t > δ2
]
P
(
∆2
t > δ2 | Fn,t−1

)
≤

n∑
t=1

E
[
∆2
t | Fn,t−1,∆2

t > δ2
]
· max
1≤t≤n

P
(
∆2
t > δ2 | Fn,t−1

)
.

Using the law of iterated expectations,

E

[
n∑
t=1

E
[
∆2
t | Fn,t−1,∆2

t > δ2
]
|Fn,0

]
=

n∑
t=1

E
[
∆2
t | Fn,0

]
= 1,

and therefore
∑n

t=1 E
[
∆2
t |Fn,t−1,∆2

t > δ2
]

= OP(1) by Lemma 1. On the other hand, using Markov

inequality and Lemma 4,

max
1≤t≤n

P
(
∆2
t > δ2 | Fn,t−1

)
≤ 1

δ2
max
1≤t≤n

E
[
∆2
t | Fn,t−1

] P−→ 0.

This completes the proof of Q̃n
d−→ N (0, 1).

In the following, we shall show that T1, T2, T3
P−→ 0. We start from the difficult term T2. By Cauchy–

Schwarz inequality,

T 2
2 =

1∥∥∥Ãn∥∥∥2
(
εTPZÃ

T
n ε
)2
≤εTPZε ·

1

‖An‖2
εT ÃnPZÃ

T
n ε

=
(
λmin(Ω̂)

)−1
OP(d) · 1

‖An‖2
εT ÃnPZÃ

T
n ε, (5.1)

where we apply Lemma 6 in the last step. Furthermore, the last quadratic form

εT ÃnPZÃ
T
n ε =

1

n
εT ÃnZΩ̂−1ZT ÃTn ε ≤

(
λmin(Ω̂)

)−1 1

n
εT ÃnZZ

T ÃTn ε.

Using the martingale property, a direct calculation yields that

E
[
εT ÃnZZ

T ÃTn ε | X
]

=

d∑
i=1

E

 ∑
1≤s<t≤n

zs,iεt
1

n
x̃Tt x̃s

2

| X


=

d∑
i=1

E

 n∑
t=1

(
t−1∑
s=1

zs,i
1

n
x̃Tt x̃s

)2
2

| X


=E

[
tr
(
ÃnZZ

T ÃTn

)
| X
]

= tr
(
ÃTn ÃnE

[
ZZT | X

])
≤ λmax

(
ÃTn Ãn

)
tr
(
E
[
ZZT | X

])
,

where X = [x1, x2, · · · , xn]>, and the last step follows from the trace inequality in Lemma 3. Exchanging

between trace and expectation operations,

E
[
tr
(
E
[
ZZT | X

])]
= tr(E

[
ZZT

]
) = nd,
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and therefore tr
(
E
[
ZZT | X

])
= Op(nd) by Lemma 1 as ZZT is non-negative definite. Hence, by Lemma

1 again,

εT ÃnZZ
T ÃTn ε = OP

(
λmax

(
ÃTn Ãn

)
nd
)

(5.2)

Collecting all bounds and substituting in (5.1) yields that

T 2
2 =

(
λmin(Ω̂)

)−2
OP(d2)

λmax

(
ÃTn Ãn

)
‖An‖2

P−→ 0.

Similarly, we can show that

T 2
1 =

(
λmin(Ω̂)

)−2
OP(d) · 1

n ‖An‖2
εT ÃTnZZ

T Ãnε
P−→ 0,

where the last step follows from Lemma 7. Finally, by Cauchy–Schwarz inequality

|T3| =
√

2

‖An‖

∣∣∣εTPZÃnPZε∣∣∣ ≤ √2

‖An‖

√
εTPZε · εTPZÃTn ÃnPZε

=Op


√√√√λmax

(
ÃTn Ãn

)
‖An‖2

εTPZε

 P−→ 0,

where we have applied Lemma 6 in the last step.

5.2 Proofs of Theorems 2 and 3

We only prove Theorem 3, as the proof of Theorem 2 is easier by substituting function δ everywhere

by a constant function on [0,∞). Let Sn = 1
nX

TX and Sn = 1
nXX

T , using the raw design matrix

X = [x1, . . . , xn]T . For any matrix A, we denote its (i, j)-th element by A(i, j). Recall that 1n denotes

n-dimensional all-ones vector. Throughout we assume all the conditions of Theorem 3, which imply that

‖An‖sp ≤ ‖Sn‖sp = OP(1) and ‖An‖ /
√
p = $n + oP(1) is bounded away from 0 with arbitrarily high

probability.

We only need to prove for the case where β 6= 0; the case for β = 0 is shown in Theorem 1. For

presentation convenience, we write An in short of An(δ), $n in short of $n(δ), and Wn in short of Wn(δ).

Expand that

Qn =
1√

2 ‖An‖
{
εT (I − PZ) + βTXT (I − PZ)

}
An {(I − PZ)ε+ (I − PZ)Xβ}

=
1√

2 ‖An‖
εT (I − PZ)An(I − PZ)ε+

√
2

‖An‖
εT (I − PZ)An(I − PZ)Xβ

+
1√

2 ‖An‖
βTXT (I − PZ)An(I − PZ)Xβ =: T1 + T2 + T3. (5.3)

Following the proof of Theorem 1, we can show T1
P−→ N (0, 1) by noting that Lemma 7 remains true

under the local alternatives:
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Lemma 8. 1√
n‖Ãn‖Z

T Ãnε = oP

(
1 + ‖β‖2

)
. Hence, Lemma 7 remains true under the alternatives.

For the theorem, it remains to show that:

(*) T3 − h2√
2
$n

P−→ 0.

(**) T2
P−→ 0.

We shall prove these statements one-by-one. We need the following lemma.

Lemma 9. βT X̃TPZX̃β = λ−1min(Ω̂) ·Op
(
‖β‖2 + n ‖β‖4

)
.

Proof of Statement (*). Substituting Wn = 1
nX̃δ(Sn)X̃T and noting that the diagonal elements Wn con-

centrate around their average in terms of sample variance,

1

p
‖An‖2 =

1

p
tr (Wn)2 − 1

p
tr (diag (Wn))2

=
1

p
tr (Wn)2 − n

p

(
1

n
tr (Wn)

)2

+ oP(1)

=

∫
x2δ2(x)dFSn(x)− p

n

(∫
xδ(x)dFSn(x)

)2

+ oP(1),

where the leading term is the square of the numerator in $n and it is bounded away from zero with

arbitrarily high probability. Further expand that√
2

p
‖An‖T3 =

1
√
p
βT X̃TAnX̃β +

1
√
p
βT X̃TPZAnPZX̃β − 2

1
√
p
βT X̃TPZAnX̃β

=:J1 + J2 + J3. (5.4)

It suffices to show that

J1 − h2
(∫

x2δ(x)dFSn(x)− p

n

∫
xdFSn(x) ·

∫
xδ(x)dFSn(x)

)
P−→ 0,

and J2, J3
P−→ 0. Decompose

J1 =
1
√
p
βT X̃TWnX̃β −

1
√
p
βT X̃T

(
1

n
tr(Wn)In

)
X̃β

− 1
√
p
βT X̃T

(
diag(Wn)− 1

n
tr(Wn)In

)
X̃β =: J1,1 + J1,2 + J1,3. (5.5)

Let h2n = n/
√
p ‖β‖2. We can rewrite

J1,1 =
1
√
p
βT X̃T

(
1

n
X̃δ(Sn)X̃T

)
X̃β = h2n

∫
x2δ(x)dFSn(x;β),

and

J1,2 =−√p ‖β‖ 1

‖β‖2
βTSnβ ·

1

p
tr (Snδ(Sn)) ·

=− h2n ·
p

n
·
∫
xdFSn(x;β)

∫
xδ(x)dFSn(x).
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Denote dt as the t-th diagonal element of Wn. Expanding the quadratic form and applying Cauchy–

Schwarz inequality,

|J1,3| =
1
√
p

∣∣∣∣∣
n∑
t=1

(
dt −

1

n

n∑
t=1

dt

)(
x̃Tt β

)2∣∣∣∣∣
≤ 1
√
p

 n∑
t=1

(
dt −

1

n

n∑
t=1

dt

)2 n∑
t=1

(
x̃Tt β

)4 1
2

=h2n

 1

n

n∑
t=1

(
dt −

1

n

n∑
t=1

dt

)2
1

n

n∑
t=1

(
x̃Tt ξn

)4 1
2

where ξn = β/ ‖β‖ is the direction of the coefficient β. Note that by assumption we have

1

n

n∑
t=1

(
dt −

1

n

n∑
t=1

dt

)2

= oP(1),

and thus to show J1,3
P−→ 0 it remains to verify that

1

n

n∑
t=1

(
x̃Tt ξn

)4
= OP(1).

For some absolute constant M ,(
x̃Tt ξn

)4
=
(
xTt ξn − x̄T ξn

)4 ≤M {(
xTt ξn

)4
+
(
x̄T ξn

)4}
.

It suffices to show that 1
n

∑n
t=1

(
xTt ξn

)4
= OP(1) and

(
x̄T ξn

)4
= OP(1). The first part immediately follows

from Lemma 1 and condition (iv). Moreover,(
x̄T ξn

)4
=
(
ξTn x̄x̄

T ξn
)2

= (OP(1))2 = OP(1),

as E
[
ξTn x̄x̄

T ξn
]

= ξTnE
[
x̄x̄T

]
ξn = O(1). This completes proof for J1,3

P−→ 0. Summing up the limits of

J1,1, J1,2 and J1,3 yields (5.2). Next, using Lemma 9,

|J2| ≤
1
√
p
‖An‖sp β

T X̃TPZX̃β = ‖An‖spOP

(
1
√
p
‖β‖2 + h2n ‖β‖

2

)
P−→ 0.

Combining with Cauchy–Schwarz inequality it follows that

|J3| ≤ 2J1J2
P−→ 0.

Substituting h2n by its limit h2 completes the proof.

Proof of Statement (**). First we decompose that

T2 =

√
2

‖An‖
εTAnX̃β −

√
2

‖An‖
εTPZAnX̃β −

√
2

‖An‖
εTAnPZX̃β +

√
2

‖An‖
εTPZAnPZX̃β

=T2,1 + T2,2 + T2,3 + T2,4.
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Note that

βT X̃TA2
nX̃β ≤ ‖An‖

2
sp β

T X̃T X̃β = n ‖An‖2sp β
TSnβ.

Hence,

E
[
T 2
2,1 | X

]
=

2

‖An‖2
βT X̃TA2

nX̃β =
2 ‖An‖2sp
‖An‖2 /n

·Op(‖β‖2)
P−→ 0,

and therefore T2,1
P−→ 0 by Lemma 1. Combining with Cauchy–Schwarz inequality and Lemma 6,

T 2
2,2 ≤ εTPZε ·

2

‖An‖2
βT X̃TA2

nX̃β = Op(d) · op(1)
P−→ 0.

Next, decompose An = Ãn + ÃTn , and

T2,3 = − 1∥∥∥Ãn∥∥∥εT ÃnPZX̃β −
1∥∥∥Ãn∥∥∥εT ÃTnPZX̃β =: T2,3,1 + T2,3,2. (5.6)

By Cauchy–Schwarz inequality,

(εT ÃnPZX̃β)2 =

(
1

n
εT ÃnZΩ̂−1ZT X̃β

)2

≤ 1

n2
εT ÃnZΩ̂−1ZT ÃTn ε · βT X̃TZΩ̂−1ZT X̃β

≤
(
λmin(Ω̂)

)−1 1

n
εT ÃnZZ

T ÃTn ε · βT X̃TPZX̃β.

We invoke from (5.2) that

εT ÃnZZÃ
T
nZε = OP

(
λmax

(
ÃTn Ãn

)
· nd

)
= oP(n ‖An‖2).

Combining with Lemma 9, we have that

T 2
2,3,1 =

1

n ‖An‖2
· oP(n ‖An‖2) ·OP (1)

P−→ 0.

Similarly,

(εT ÃTnPZX̃β)2 ≤
(
λmin(Ω̂)

)−1 1

n
εT ÃTnZZ

T Ãnε · βX̃TPZX̃β

and therefore, combining Lemma 8 and Lemma 9,

T 2
2,3,2 = oP(1 + ‖β‖2) ·OP (1)

P−→ 0.

Finally, using Cauchy–Schwarz inequality and Lemma 6 and 9,

T 2
2,4 ≤

2

‖An‖2
εTPZε · βT X̃TPZA

2
nPZX̃β

≤
2 ‖An‖2sp
‖An‖2

· εTPZε · βT X̃TPZX̃β = oP(1) ·OP(1) ·OP (1)
P−→ 0.

This completes the proof.
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5.3 Proof of Theorems 4 and 5

The proof of Theorem 4 is straightforward and is available in the supplement (He et al., 2020) for

completeness: the first part is completely analogous to that in the subsection 5.1; the second part follows

from Theorem 5 (to be proved below) and we verify that ρ2n = µTnµn
P−→ 0 in this case.

To prove Theorem 5, we need the following lemma:

Lemma 10. Under the conditions of Theorem 5,∥∥∥∥∥∥ 1
√
n
∥∥∥Ãn∥∥∥ZT Ãnε− Ω1/2µn

∥∥∥∥∥∥
2

P−→ 0.

Proof of Theorem 5. We first expand our test statistic as

Qn =
1∥∥∥Ãn∥∥∥εT (I − PZ)Ãn(I − PZ)ε

=
1∥∥∥Ãn∥∥∥

(
εT Ãnε−

1

n
εTZΩ−1ZT Ãnε

)

− 1∥∥∥Ãn∥∥∥εT
1

n
Z
(

Ω̂−1 − Ω−1
)
ZT Ãnε−

1∥∥∥Ãn∥∥∥εTPZÃTn ε+
1∥∥∥Ãn∥∥∥εTPZÃnPZε

=

 1∥∥∥Ãn∥∥∥εT Ãnε−
1√
n
εTZΩ−1/2µn

− 1√
n
εTZΩ−1/2

 1
√
n
∥∥∥Ãn∥∥∥Ω−1/2ZT Ãnε− µn


− 1∥∥∥Ãn∥∥∥εT

1

n
Z
(

Ω̂−1 − Ω−1
)
ZT Ãnε−

1∥∥∥Ãn∥∥∥εTPZÃTn ε+
1∥∥∥Ãn∥∥∥εTPZÃnPZε

=: Q̃n − T1,1 − T1,2 + T2 + T3, (5.7)

where T2 = oP(1) and T3 = oP(1) are the same in the proof of Theorem 1, and

Q̃n =
n∑
t=1

εt

 t−1∑
s=1

1∥∥∥Ãn∥∥∥εs
1

n
x̃Ts x̃t −

1√
n
zTt Ω−1µn

 =:
n∑
t=1

∆t

and ∆t is a martingale difference array such that E(∆t|Fn,t−1) = 0 and E
(
∆2
t |Fn,0

)
= 1− ρ2n > 0.

It suffices to show that T1,1, T1,2
P−→ 0 and Q̃n/

√
1− ρ2n

d−→ N (0, 1). By Cauchy–Schwarz inequality,

T 2
1,1 ≤

1

n
εTZΩ−2ZT ε ·

∥∥∥∥∥∥ 1
√
n
∥∥∥Ãn∥∥∥ZT Ãnε− Ω1/2µn

∥∥∥∥∥∥
2

.

By Lemma 10,

∥∥∥∥ 1√
n‖Ãn‖Z

T Ãnε− Ω1/2µn

∥∥∥∥2 = oP(1). In addition,

1

n
εTZΩ−2ZT ε ≤ (λmin(Ω))−2

1

n
εTZZT ε = (λmin(Ω))−2

1

n

n∑
t=1

ε2t z
T
t zt
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and, by using the martingale condition

E

[
1

n

n∑
t=1

ε2t z
T
t zt

]
= E(zTt zt) = tr(Ω) = O(1).

Hence, T 2
1,1 = OP(1)·oP(1)

P−→ 0. Furthermore, using the spectral decomposition of Ω̂−1−Ω =
∑d+1

i=1 λ̃iũiũ
T

and Cauchy–Schwarz inequality, it is not hard to show that

|T1,2| ≤

(
d+1∑
i=1

|λ̃i|

)
·
√

1

n
εTZZT ε ·

√√√√ 1∥∥∥Ãn∥∥∥2 εT ÃTn
1

n
ZZT Ãnε.

Taking squares of both sides, and recall from above that 1
nε
TZZT ε = OP(1) and noting that |λ̃i| = oP(1),

T 2
1,2 =oP

 1∥∥∥Ãn∥∥∥2 εT ÃTn
1

n
ZZT Ãnε

 = λmax(Ω̂) · oP

 1∥∥∥Ãn∥∥∥2 εT ÃTn Ãnε
 P−→ 0,

where in the last equality we used the identity
∥∥ 1
nZZ

T
∥∥
sp

= λmax(Ω̂), and for the convergence we applied

Lemma 1 with the fact that E
[

1

‖Ãn‖2
εT ÃTn Ãnε | Fn,0

]
=

tr(ÃTn Ãn)

‖Ãn‖2
= 1.

It remains to show that Q̃n/
√

1− ρ2n
d−→ N (0, 1). Following the proof of Theorem 1, it suffices to

verify that:

(*) max1≤t≤n E
[
∆2
t | Fn,t−1

] P−→ 0.

(**) 1
1−ρ2n

∑n
t=1 E

[
∆2
t | Fn,t−1

] P−→ 1, or
∑n

t=1 E
[
∆2
t | Fn,t−1

]
−
(
1− ρ2n

) P−→ 0.

By Cauchy–Schwarz inequality,

E
[
∆2
t | Fn,t−1

]
=

 t−1∑
s=1

1∥∥∥Ãn∥∥∥εs
1

n
x̃Ts x̃t −

1√
n
zTt Ω−1/2µn

2

≤ 2∥∥∥Ãn∥∥∥2
(
t−1∑
s=1

εs
1

n
x̃Ts x̃t

)2

+
2

n

(
zTt Ω−1/2µn

)2
=: Jt,1 + Jt,2.

From Lemma 4 we already know that max1≤t≤n Jt,1
P−→ 0. It remains to show that max1≤t≤n Jt,2

P−→ 0.

By Cauchy–Schwarz inequality,

Jt,2 ≤ µTnµn ·
2

n
zTt Ω−1zt = ρ2n ·

2

n
zTt Ω−1zt.

By a direct calculation,

E
[
zTt Ω−1zt

]
= tr

(
E
[
Ω−1ztz

T
t

])
= tr (Id) = d <∞.

Then using, for example, Lemma 11.2 in Owen (2001) and noting the independent condition is not

necessary for the Borel–Cantelli arguments therein, we have max1≤t≤n z
T
t Ω−1zt = o(n). It then follows

that max1≤t≤n Jt,2 = o(1).
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It remains to verify the condition (**). Let bt = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rd denote the unit vector

with t-th entry equaling to 1 and all other entries equaling to 0. By a direct calculation,

E
[
∆2
t | Fn,t−1

]
=

 Ãn∥∥∥Ãn∥∥∥ε−
1√
n
ZΩ−1/2µn

T

btb
T
t

 Ãn∥∥∥Ãn∥∥∥ε−
1√
n
ZΩ−1/2µn

 .

Hence,

n∑
t=1

E
[
∆2
t | Fn,t−1

]
=

 Ãn∥∥∥Ãn∥∥∥ε−
1√
n
ZΩ−1/2µn

T  Ãn∥∥∥Ãn∥∥∥ε−
1√
n
ZΩ−1/2µn


=εT

ÃTn Ãnε∥∥∥Ãn∥∥∥2 − µTnµn − 2µTn

(
1√

n ‖An‖
Ω−1/2ZT Ãnε− µn

)

+ µTn

(
Ω−1/2Ω̂Ω−1/2 − Id

)
µn =: R1 −R2 − 2R3 +R4.

From Lemma 5 we already know that R1
P−→ 1. Moreover, recall that R2 = ρ2n and

|R4| ≤ R2

∥∥∥Ω−1/2Ω̂−1Ω−1/2 − Id
∥∥∥
sp

P−→ 0.

It remains to prove that R3
P−→ 0. Using Cauchy–Schwarz inequality and Lemma 10,

R2
3 ≤µTnµn ·

∥∥∥∥ 1√
n ‖An‖

Ω−1/2ZT Ãnε− µn
∥∥∥∥2

≤1 · (λmin(Ω))−1
∥∥∥∥ 1√

n ‖An‖
ZT Ãnε− Ω1/2µn

∥∥∥∥2 P−→ 0.

Our proof is now complete.

5.4 Proof of Theorems 6 and 7

The proof of Theorem 6 is completely analogous to that of Theorem 3 and the details are available in

the supplement (He et al., 2020) for completeness.

To prove Theorem 7, we need to generalize Lemma 10:

Lemma 11. Lemma 10 remains true under the alternatives.

Proof of Theorem 7. We prove the general results in Remark 3, and the theorem is the special case with

δ(x) = 1. We invoke the decomposition Qn(δ) = T1 + T2 + T3 in (5.3). Recall from (5.7) and the proof

of Theorem 5 that we can rewrite T1 = Q̃n(δ) − T1,1 − T1,2, where Q̃n(δ)/
√

1− ρ2n(δ)
d−→ N (0, 1) and

T1,1, T1,2
P−→ 0 using Lemma 11. Next, invoking the proof of statements (*) and (**) in the proof of

Theorem 3 respectively, we can show that T3 = h2√
2
$n(δ) + oP(1) and T2 = T2,3,2 + oP(1) by generalizing

Lemma 9 to be

βT X̃TPZX̃β = Op

(
‖β‖2 + n ‖β‖4 + 1

)
; (5.8)
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see the proof of Theorem 6 in the supplement for the proof of the last equation.

It remains to show that T2,3,2 + h2$n√
2
µTn (δ)µn

P−→ 0. Note that from (5.6) we have

T2,3,2 :=− 1∥∥∥Ãn(δ)
∥∥∥εT ÃTn (δ)PZX̃β

=−

 1
√
n
∥∥∥Ãn∥∥∥ZT Ãnε

T

Ω̂−1
(

1√
n
ZT X̃β

)

=−
(

Ω1/2µn(δ) + oP(1)
)T (

Ω−1 + oP(1)
)( 1√

n
ZT X̃β

)
.

It suffices to show that
1√
n
ZT X̃β − h2$n√

2
Ω1/2µn

P−→ 0.

Recall from the proof of Theorem 3 that, for δ(x) ≡ 1,
∥∥∥Ãn∥∥∥ /√p = ‖An‖ /

√
2p = $n/

√
2 + oP(1).

Then substituting $n/
√

2 by
∥∥∥Ãn∥∥∥ /√p, substituting h2 by n√

p ‖β‖
2, and using the additional freeness

assumption in the theorem, we only need to show that

1√
n
ZT X̃β − 1√

n

[
0, βT X̃TΨT

1 X̃β, . . . , β
T X̃TΨT

d X̃β
]

P−→ 0,

that is,
1√
n

zTi X̃β −
1√
n
βT X̃TΨT

i X̃β
P−→ 0, ∀i = 1, . . . , d.

Now using the expansion

zi := (z1,i, . . . , zn,i)
T = αi1n + Ψiε+ ΨiXβ + vi, i = 1, . . . , d,

we have that

1√
n

zTi X̃β −
1√
n
βT X̃TΨT

i X̃β =
1√
n
εTΨT

i X̃β +
1√
n

vTi X̃β =: R1 +R2.

Noting that
∥∥ΨiΨ

T
i

∥∥
sp
≤ (
∑∞

l=1 |ψi(l)|)
2 <∞,

E
[
R2

1 | X
]

=
1

n
βT X̃TΨiΨ

T
i X̃β ≤

∥∥ΨiΨ
T
i

∥∥
sp
βTSnβ = O(1) ·OP

(
‖β‖2

)
P−→ 0.

Moreover, we have either that, by Cauchy–Schwarz inequality,

R2
2 ≤ vTi vi · βTSnβ = oP(np−1/2) ·OP

(
‖β‖2

)
P−→ 0,

or, by the definition of spectral norm,

E
[
R2

2 | X
]
≤ λmax

(∥∥E [vivTi |X]∥∥sp)βTSnβ P−→ 0.

While R2
2 and E

[
R2

2 | X
]

above are actually defined with different sub-sigma-algebras, we extend the defi-

nition of the random variables in the largest probability space with probability measure P for presentation

convenience. In either case we have R2
P−→ 0. Our proof is now complete.
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5.5 Proof of Corollaries 1–6

Proof of Corollary 1. It suffices to prove the consistency of the variance estimator (2.7). A direct calcu-

lation yields the matrix expression given by

σ̂2 =
1

n− (d+ 1)
εT (I − PZ) ε =

n

n− (d+ 1)

1

n
εT ε− 1

n− (d+ 1)
εTPZε =: T1 + T2.

Using the martingale law of large number and noting that d/n→ 0, we can show that T1
P−→ 1. It remains

to show that T2
P−→ 0, which follows from Lemma 6.

Proof of Corollary 2 . Note that the support of FSn is bounded with probability tending to 1. It follows

from Portmanteau Theorem (e.g. Theorem 2.1 in Billingsley) that $n
P−→ $, where $ has the same

expression but uses F instead of FSn .

Proof of Corollary 3 and 4. We only need to prove under the local alternatives (2.8) that σ̂2n/σ
2
n

P−→ 1.

Expanding

1

n− (d+ 1)
yT (I − PZ) y

=
1

n− (d+ 1)
(Xβ + ε)T (I − PZ) (Xβ + ε)

=
1

n− (d+ 1)
βT X̃T (I − PZ) X̃β +

2

n− (d+ 1)
βT X̃T (I − PZ) e+

1

n− (d+ 1)
eT e

=:T1 + T2 + T3.

Note that Lemma 6 holds under the alternatives as well, and then by carefully checking the proof of

Corollary 1, we already have T3
P−→ 1. Using the spectral norm inequality,

T1 ≤‖I − PZ‖sp ·
1

n− (d+ 1)
βT X̃T X̃β

≤1 · n

n− (d+ 1)
βTSnβ = OP

(
‖β‖2

)
P−→ 0.

Finally, by Cauchy–Schwarz inequality T 2
2 ≤ T1 · T3

P−→ 0.

Proof of Corollary 5. It suffices to show that ρ̂2n − ρ2n = ρ̂2n − ‖µn‖
2 P−→ 0. Let

ρ̂2n =
eT ÃTnPZÃne/

∥∥∥Ãn∥∥∥2
eT
(
ÃTn Ãn

)
e/
∥∥∥Ãn∥∥∥2 =:

∆1

∆2
.

It suffices to show that: (*) ∆1 − ‖µn‖2
P−→ 0; and (**) ∆2 − 1

P−→ 0.

We expand that

∆1 =
εT ÃTnPZÃnε∥∥∥Ãn∥∥∥2 − 2εTPZÃ

T
nPZÃnε∥∥∥Ãn∥∥∥2 +

εTPZÃ
T
nPZÃnPZε∥∥∥Ãn∥∥∥2 =: ∆1,1 − 2∆1,2 + ∆1,3.
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By Lemma 10 and the assumption that Ω̂
P−→ Ω,

∆1,1 =

(
1√

n ‖An‖
ZT Ãnε

)T
Ω̂−1

(
1√

n ‖An‖
ZT Ãnε

)
=
(

Ω1/2µn + oP(1)
)T (

Ω−1 + oP(1)
) (

Ω1/2µn + oP(1)
)

= µTnµn + oP(1).

On the other hand, using the definition of spectral norms and Lemma 6,

0 ≤ ∆1,3 ≤ ‖PZ‖sp
λmax

(
ÃTn Ãn

)
∥∥∥Ãn∥∥∥2 · εTPZε = 1 · oP(1) ·OP(1)

P−→ 0.

Now applying Cauchy–Schwarz inequality we also have that

|∆1,2|2 ≤ ∆1,1∆1,3
P−→ 0.

This completes the proof of statement (*). The proof of statement (**) is similar. We expand that

∆2 =
εT ÃTn Ãnε∥∥∥Ãn∥∥∥2 − 2

εTPZÃ
T
n Ãnε∥∥∥Ãn∥∥∥2 +

εTPZÃ
T
n ÃnPZε∥∥∥Ãn∥∥∥2 =: ∆2,1 − 2∆2,2 + ∆2,3.

Note that the diagonal elements of ÃTn Ãn are nonnegative and bounded by λmax

(
ÃTn Ãn

)
, and their sum

tr
(
ÃTn Ãn

)
=
∥∥∥Ãn∥∥∥2. Using Lemma 2,

∆2,1 − 1 =OP


λmax

(
ÃTn Ãn

)
∥∥∥Ãn∥∥∥2


ι

1+ι

+

∥∥∥ÃTn Ãn∥∥∥∥∥∥Ãn∥∥∥2


=oP(1) +OP

λ
1/2
max

(
ÃTn Ãn

)
·
√

tr
(
ÃTn Ãn

)
∥∥∥Ãn∥∥∥2

 P−→ 0.

Finally, by the definition of spectral norm and Lemma 6,

0 ≤ ∆2,3 ≤
λmax

(
ÃTn Ãn

)
∥∥∥Ãn∥∥∥2 · εTPZε = oP(1) ·OP(1)

P−→ 0,

and by Cauchy–Schwarz inequality ∆2
2,2 ≤ ∆2,1∆2,3

P−→ 0. This completes the proof.

Proof of Corollary 6. We need to prove that ρ̂2n − ρ2n
P−→ 0 under the alternatives. Let

ρ̂2n =
eT ÃTnPZÃne/

∥∥∥Ãn∥∥∥2
eT
(
ÃTn Ãn

)
e/
∥∥∥Ãn∥∥∥2 =:

∆̃1

∆̃2

.

It suffices to show that: (*) ∆̃1 − ρ2n
P−→ 0; and (**) ∆̃2 − 1

P−→ 0.
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By a direct calculation,

∆̃1 =
εT (I − PZ)ÃTnPZÃn(I − PZ)ε∥∥∥Ãn∥∥∥2 +

βT X̃T (I − PZ)ÃTnPZÃn(I − PZ)X̃β∥∥∥Ãn∥∥∥2
+ 2

βT X̃T (I − PZ)ÃTnPZÃn(I − PZ)ε∥∥∥Ãn∥∥∥2 =: ∆1 +R1 +R2.

Recall from the proof of Corollary 5 that ∆1 − ρ2n
P−→ 0. For statement (*) it remains to show that

R1
P−→ 0, as then by Cauchy–Schwarz inequality we have R2

2 ≤ 4∆1R1
P−→ 0. Observe that λmax(PZ) =

λmax(I − PZ) = 1. Then, using the definition of spectral norm,

R1 ≤
λmax

(
ÃTn Ãn

)
∥∥∥Ãn∥∥∥2 /n βTSnβ = OP

(
‖β‖2

)
P−→ 0,

where we used the facts that λmax

(
ÃTn Ãn

)
≤ λ2max(Sn) = OP(1) and

∥∥∥Ãn∥∥∥2 /n = ‖An‖2 /(2n) =

p
2n ($n + oP(1)) which is bounded away from 0 with probability tending to 1.

The proof of statement (**) is completely analogous, after replacing ÃTnPZÃn by ÃTn Ãn everywhere

above. We omit the details.
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